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Abstract

The ability of the three-dimensional Navier-Stokes
method, PAB3D, to simulate the e�ect of Reynolds num-
ber variation using non-linear explicit algebraic Reynolds
stress turbulence modeling was assessed. Subsonic 
at plate
boundary-layer 
ow parameters such as normalized veloc-
ity distributions, local and average skin friction, and shape
factor were compared with DNS calculations and classical
theory at various local Reynolds numbers up to 180 million.
Additionally, surface pressure coe�cient distributions and
integrated drag predictions on an axisymmetric nozzle af-
terbody were compared with experimental data from 10 to
130 million Reynolds number. The high Reynolds data was
obtained from the NASA Langley 0.3m Transonic Cryogenic
Tunnel. There was generally good agreement of surface
static pressure coe�cients between the CFD and measure-
ment. The change in pressure coe�cient distributions with
varying Reynolds number was similar to the experimental
data trends, though slightly over-predicting the e�ect. The
computational sensitivity of viscous modeling and turbu-
lence modeling are shown. Integrated afterbody pressure
drag was typically slightly lower than the experimental data.
The change in afterbody pressure drag with Reynolds num-
ber was small both experimentally and computationally,
even though the shape of the distribution was somewhat
modi�ed with Reynolds number.

Introduction

Current focused program e�orts are considering Reynolds
number scaling a signi�cant aspect of aircraft testing and
development. Wing aerodynamics and 
ow about propul-
sion systems can have considerable sensitivity to varying
Reynolds number. Most of the sub-scale wind tunnel testing
occurs at Reynolds numbers below that of 
ight conditions;
therefore, the ability of computational 
uid dynamics (CFD)
to simulate higher Reynolds number 
ow is of importance.

Previous to the development of cryogenic test techniques
for achieving high Reynolds numbers in wind tunnel facili-
ties, little fundamental research data had been available for
the evaluation of any theoretical methods to predict these
e�ects. Several years ago, during the development phase of
cryogenic testing techniques at the NASA Langley Research
Center; two sets of simple axisymmetric nacelle models were
built and tested in what was then known as the 1/3m Pilot
Transonic Cryogenic Tunnel (now the 0.3m Transonic Cryo-
genic Tunnel). This was some of the �rst set of test data
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for nozzle-boattail geometries taken over a large range of
Reynolds numbers, refs. 1{4.

The current investigation assesses the capability of the
Navier-Stokes method PAB3D, version 13S, (refs. 5{8) using
non-linear algebraic Reynolds stress turbulence models to
predict the Reynolds number e�ects on the 
ow about a
nozzle boattail. and simulate a 5 meter 
at plate at very
high Reynolds numbers. Comparisons were made with wind
tunnel data for the boattail geometry and boundary layer
pro�les, shape factor, and skin friction with DNS data and
textbook equations for incompressible 
at plate 
ow.

Nomenclature

Amax maximum body cross-sectional area,

0.78539 in2

CD pressure drag coe�cient, F
q1Amax

CF average skin friction coe�cient,
1
lq1

P
�w�l

Cf local skin friction coe�cient, �w=q1

Cp pressure coe�cient, p�p1q1

dm body maximum diameter, 1.0 in.

F axial force along body axis

f� near-wall damping function for linear
K � "

GS Gatski-Speziale

H12 boundary layer shape factor, �1=�2

H32 boundary layer shape factor, �3=�2

h1 physical height of �rst computational
grid from a wall

K turbulent kinetic energy

l integration length of 
at plate

L model reference length

M Mach number

NRe Reynolds number based on model refer-
ence length

n direction normal to wall

P production term for turbulent kinetic
energy

p static pressure, Pa

q dynamic pressure, Pa

RL Reynolds number based on 
at plate
integration length

RT cell turbulent Reynolds number, K2=��

Rx Reynolds number based on distance x,
u1x=�
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R�1
displacement thickness Reynolds number,
u1�1=�

R� momentum thickness Reynolds number,
u1�2=�

t time

S strain tensor

SZL Shih, Zhu & Lumley

U magnitude of local velocity,
pP

uk
2

u stream-wise velocity

uk cartesian velocity components

u+ law-of-the-wall coordinate, u=u�

u� friction velocity,
p
(�w=�)

u0v0+ nondimensional shear stress, u0v0=u�
2

W vorticity tensor

x stream-wise distance

y+ law-of-the-wall coordinate, nu�=�

z vertical distance

�l incremental distance on 
at plate

�1 boundary layer displacement thickness

�2 boundary layer momentum thickness

�3 boundary layer energy thickness

� turbulent dissipation

� laminar viscosity

�t turbulent viscosity

�w local laminar viscosity at the wall

� kinematic viscosity, �=�

� density

� shear stress

� angular location of pressure ori�ces, deg

Superscripts

L laminar

T turbulent

Subcripts

� nozzle boattail component contribu-
tion

CL centerline

fp 
at plate

l laminar

n non-linear component

t turbulent

t0 free stream total condition

sf skin friction contribution

w;wall condition at the wall surface

1 free stream condition

Computational Procedure

Governing Equations

The code used was the general three dimensional (3-D)
Navier-Stokes method PAB3D, version 13S. This code has
several computational schemes, di�erent turbulence models,
and viscous stress models that can be utilized, as described
in more detail in refs. 5 through 8. The governing equations
are the Reynolds-averaged simpli�ed Navier-Stokes equa-
tions (RANS) obtained by neglecting all stream-wise deriva-
tives of the viscous terms. The resulting equations are
written in generalized coordinates and conservative form.
Viscous model options include k-thin layer, j-thin layer,
jk-uncoupled and jk-coupled simulations. Typically the thin-
layer viscous assumption of the full 3-D viscous stresses is
utilized. Experiments such as the investigation of super-
sonic 
ow in a square duct was found to require fully cou-
pled 2 directional viscosity to properly resolve the physics
of the secondary cross-
ow. The Roe upwind scheme with
�rst, second, or third order accuracy can be used in evalu-
ating the explicit part of the governing equations and the
van Leer scheme is used to construct the implicit operator.
The di�usion terms are centrally di�erenced and the inviscid

ux terms are upwind di�erenced. Two �nite volume 
ux-
splitting schemes are used to construct the convective 
ux
terms.

All solutions were developed using third-order accurate
schemes for the convective terms, and second-order for the
viscous di�usion terms, denoted by the �rst 3 in the nomen-
clature in the �gures and tables and the min-mod solution
limiter, denoted by the second 2 in the nomenclature. Only
the viscous model is varied in this study, denoted by the
third number in the nomenclature. For completeness, a ta-
ble of nomenclature designating the order of scheme, limiter,
and viscous modeling is given below. Other solution limiters
include van Albeda, Spekreijse-Venkat (S-V) and a modi�ed
S-V (ref. 9). Solution limiters in
uence solution convergence
and �nal results. In some instances, such as a jet-plume sim-
ulation, the van Albeda solution limiter is required to obtain
a smooth converged solution.

Nomenclature Solution Limiter Viscous model

311 van Albeda k-thin layer

312 van Albeda jk-coupled

313 van Albeda jk-uncoupled

321 min-mod k-thin layer

322 min-mod jk-coupled

323 min-mod jk-uncoupled

331 S-V k-thin layer

332 S-V jk-coupled

333 S-V jk-uncoupled

341 modi�ed S-V k-thin layer

342 modi�ed S-V jk-coupled

343 modi�ed S-V jk-uncoupled

The code can utilize either a 2-factor or 3-factor numerical
scheme to solve the 
ow equations. The 2-factor scheme is
typically used as it requires 10 to 15 percent less memory
as compared to the 3-factor scheme. The memory di�erence
is dependent on the size of cross-planes of the speci�c grid
being used. When the 2-factor scheme is used the orientation
of the grid and predominate 
ow direction typically along
the i grid index, such that the Roe scheme is utilized to
sweep stream-wise through the computational domain and
the van Leer scheme for the solution of the cross-plane
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(i.e., i = constant) of a 3-D problem. However solving a
single-cell wide two-dimensional (2-D) mesh de�ned with
the i direction of the grid oriented in the conventional
stream-wise direction will typically converge slower using
the Roe relaxation solution scheme compared to solving the
equivalent problem with the van Leer scheme. Therefore the
i and j directions of a 2-D mesh are swapped allowing the
entire 
ow-�eld to be solved implicitly with each iteration.
The explicit sweep is not used since only one cell exists in the
i direction. The implicit scheme usually has a much higher
rate of convergence and typically provides a solution using
less computational time.

Turbulence Simulation

The turbulence model equations are uncoupled from the
RANS equations and are solved with a di�erent time step,
typically 1/2, than that of the principle 
ow solution. A
considerably lower principle Courant-Friedrichs-Levy (CFL)
number is typically required to solve problems if both the
main 
ow equations and turbulence equations are solved it-
eratively using identical time rates. Larger time step di�er-
ences, e.g., 1/4 to 1/8, slow solution convergence further but
result in identical �nal solutions. Flow solution transients at
times require the turbulence equations time step to be re-
ducted temporarily. Turbulence simulations are resolved at
all grid levels, not just at the �nest grid level.

Version 13S of the PAB3D code used in this study has
options for several algebraic Reynolds stress (ASM) turbu-
lence simulations. The Standard model coe�cients of the
K � " equations were used as the basis for all the linear and
non-linear turbulent simulations, ref. 10. Additionally, it is
known that the eddy viscosity models produce inaccurate
normal Reynolds stresses. Flat plate 
ow, as well as other
more complex aerodynamic 
ows, are anisotropic.

Successful implementation of the algebraic Reynolds
stress models required the solution methodology for turbu-
lent production term P of the underlying linear turbulence
calculations to be modi�ed. P depends on high order deriva-
tives of the turbulent Reynolds stresses. Proper represen-
tation of the stresses should be provided by face centered
values, rather than the cell centered values. Previous at-
tempts to implement non-linear turbulence models in the
context of a cell centered eddy viscosity model worked only
for 2-D problems and was unable to resolve 3-D 
ows.

Linear K � " equations|The transport equation for the
turbulent kinetic-energy, K, and the dissipation rate are
written as:

@"

@t
+ uk

@"

@xk
=

@

@xk

�
(�L + C�

K2

"
)
@"

@xk

�

+ C"1
"P

K
� C"2

"

K

2
4"� 2�

 
@
p
K

@n

!2
3
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The convective terms are solved using third-order di�er-
encing. The di�usion terms are solved using second-order
central di�erencing.

@K

@t
+ uk

@K

@xk
= P � " +

@

@xk

�
(�L + C�

K2

"
)
@K

@xk

�
(2)

where P = �T
ik

@ui

@xk
and (C"1=1:44; C"2=1:92; C�=0:090):

The damping function of Launder & Sharma, ref. 11,

f� = exp
�
�3:41=(1 + RT=50:)

2
�
, determined the behavior

of " near the wall as a function of turbulent Reynolds number
RT = K2=�". The boundary conditions for " and K at

the wall are "wall = 2�
�

@

@n

p
K
�2

and Kwall = 0. The

stress components in linear turbulence models are developed
with laminar and turbulent components, �ij = �L

ij
+ �T

ij
. A

generalization of Boussinesq's hypothesis rede�nes laminar
and turbulent components are as follows:

�L
ij
= AL�ij � 2�LSij (3)

where

AL =
2

3
�LSkk and Sij =

1

2

�
@ui
@xj

+
@uj

@xi

�
(4)

The turbulent component of the stresses �T
ij

is repre-

sented by the sum of linear (Tl) and non-linear (Tn) compo-

nents. The linear stress is �
T
l

ij
= AT �ij � 2�TSij where

AT = 2

3
(�K + �TSkk). The non-linear component of the

turbulent stresses are addressed in the following section.

Non-Linear Turbulent Stress Equations|Three theories
of explicit algebraic Reynolds stress models were imple-

mented. The Reynold's stress contribution �
Tn

ij
used by

Shih, Zhu, & Lumley (SZL), (ref. 12) is;

�Tn
ij

= 2�
K3

�2

�
WikSkj � SikWkj

�
(5)

Gatski & Speziale (GS), (ref. 13);

�Tn
ij

= C��
K3

"2

�
�1(WikSkj � SikWkj) + �2(SikSkj

�1

3
SmnSmn�ij)

�
(6)

and Girimaji (G), (ref. 14);

�Tn
ij

= 2C��
K3

"2

�
�G2

�
WikSkj � SikWkj

�
+ G3(SikSkj

�1

3
SmnSmn�ij)

�
(7)

where

Wij =
1

2

�
@ui
@xj

�
@uj

@xi

�

Sij = Sij �
1

3
Skk�ij

The turbulent viscosity, �T , is de�ned as

�T = C��

�
�K2

�

�
(8)
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where C�� = f�C� for solutions solving linear turbulence sim-
ulations and equal to the variable function C�

� = f(S;W;K; ")
for solutions involving algebraic Reynolds stress simulations.
Functions for C�

� take the following forms for each of the
ASM.

Shih, Zhu & Lumley, (ref. 12):

C�
� = 1=

�
6:5 + A�s

U�K
�

�
(9)

Gatski-Speziale, (ref. 13):

C�
� = const: � (1 + �2)=(3 + �2 + 6�2 2 + 6 2) (10)

A�s , U� , �, and  are all di�erent functions of the strain
and vorticity tensors and are detailed in the references.

Girimaji, (ref. 14):

G1 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

L1
0L2=

�
(L0

1)
2 + 2�2(L4)

2
�

for �1 = 0;

L1
0L2=

�
(L0

1)
2 + 2

3�1(L3)
2 + 2�2(L4)

2
�

for L1
1 = 0;

� p
3 +

�
� b

2 +
p
D
� 1

3
+
�
� b

2 �
p
D
� 1

3
for D > 0;

� p
3 + 2

q
�a
3 cos( �3 ) for D < 0 and b < 0;

� p
3 + 2

q
�a
3 cos( �3 +

2�
3 ) for D < 0 and b > 0.

(11)

The variable G1 utilized by Girimaji is equal to �C�
�.

A compilation of the parameters used in Girimaji's model
can be found in the Appendix. Additional information is in
reference 14.

The solution processes for wall-bounded 
ows were
equally robust for each of the models. Previous results, not
published here, show Gatski-Speziale requiring lower CFL
numbers for the solution of free-shear 
ows. Obtaining con-
verged solutions using Gatski's C�

� were found to be problem
dependent. Girimaji's G1 function appears to be extremely
well behaved permitting for fairly high CFL numbers to
used.

Turbulent Trip Equations|The technique used for initial-
izing the viscous 
ow transition from laminar to turbulent is
placing K and " pro�les at user-speci�ed lines or planes in the

ow�eld. The line or plane of the speci�ed trip area is sur-
veyed for the maximum and minimum velocity and vorticity
along that line and a shape function from 0 to 1 is created of
the form F = (f � fmin)=(fmax � fmin) where f is a prod-

uct of the velocity and vorticity f = ujW j; jW j = 2
qP

W2
ij .

The turbulent kinetic energy pro�le is then K = � U F ,
where � is a free parameter determining the magnitude of
the impulse as a percent of local total velocity, U . The typi-
cal value speci�ed by the user, and used for this paper, is 2%
(or � = 0:02). The " pro�le is developed from the assump-
tion that production P is equal to the dissipation " equaling

C�
K2

" 2�Sij
@ui
@xj

. The result of the initialization is seen as a

spike in the K �eld of the solution. This initial turbulent
pro�le develops as permitted by the local 
ow conditions.

Solution Process

Turbulent 
ow solutions using ASM and two-equation
linear K � � model requires 23 words per grid point. The
code speed is dependent on the turbulence model, thin-layer
assumptions and numerical schemes. The following table
are some options available in the code with C-90 timing in
�seconds/iteration/grid point.

Turbulence

Solver Scheme Viscous Modeling Stress Timing C-90

Modeling (3rd-order) Center �s/iter/grid

2-factor j-k uncoupled Girimaji ASM Face 23

2-factor k thin-layer Girimaji ASM Face 20

Diagonalization j-k uncoupled Girimaji ASM Face 16

Diagonalization k thin-layer Girimaji ASM Face 14

2-factor k thin-layer Gatski & Face 19

Speziale ASM

2-factor k thin-layer SZL ASM Face 20

2-factor k thin-layer Linear-Isotropic Face 18

2-factor k thin-layer Linear-Isotropic Cell 17

Diagonalization k thin-layer Linear-Isotropic Face 12

Several parameters were used to gauge solution conver-
gence. Local skin friction, shape factor and solution residual
were monitored for convergence of the 
at plate solutions.
Total afterbody drag, nozzle pressure drag, and solution
residual were used to determine the solution status at the
coarse (144), medium (122), and �ne (111) grid levels of the
axisymmetric afterbody. The 144 abbreviation means divide
number of i-cells by 1, number of j-cells by 4 and the number
of k-cells by 4. Afterbody drag variance of less than 0.50 per-
cent for several hundred iterations was achieved for all test
cases.

The conservative patch interface package of Pao and
Abdol-Hamid (ref. 7) enables the code to properly transmit
information between mis-matched block interfaces. Integer-
to-one interfaces are considered a subset of the arbitrary
block interface and do not need to be speci�ed as such to
the patching code. The patching program is a preprocessor
that writes a connectivity data base prior to the start of the
�rst solution. Each entry to the patch data base contains
cell face areas and indices relating that cell with all other
cells that will share momentum 
ux information. The data
base information is automatically re-allocated internal to the
code during mesh sequencing. As a result, each block can
be sequenced at di�erent levels and the correct interface
information is maintained at the cell level. However, it is
important to note that features in the 
ow developed on one
side of an interface should not be obliterated on the other
side due to an excessive grid density mis-match.

Third-order continuity in transmitting the 
uxes across
block boundaries is maintained by the code; lower order
continuity may be speci�ed by the user if required. As
with most Navier-Stokes methods of the type, equal cell size
spacing on either side of an interface in directions normal
to the interface should be maintained regardless of the mesh
sequencing level of the block.

Boundary Conditions

For this study, solid walls were treated as no-slip adiabatic
surfaces. The solid wall boundary condition was satis�ed
by setting the momentum 
ux of the solid wall cell face

4

Americal Institute of Aeronautics and Astronautics



to zero. A boundary condition for the Riemann invariants
along the characteristics was speci�ed for the free-stream
in
ow face and the lateral free-stream outer boundary of
the 
ow domain. An extrapolation boundary condition was
applied on the downstream out
ow face. The axisymmetric

ow assumption for the single-cell grids was implemented
by placing 
ow symmetry conditions to the lateral side
boundaries of the computational domain.

Results and Discussion

Subsonic Flat Plate

Flat Plate Grid|The 5 m 
at plate multiblock grid had
an H-type mesh topology, with the blocking sketched in
�gure 1. The computational domain included in
ow block
extending 1 meter upstream from the leading edge of the 5
m 
at plate. The initial stream-wise grid spacing at the
leading edge of the plate was 1:�104m and was exponentially
stretched from the leading edge to the trailing edge at a
rate of 5% with a total of 161 grid points. The �rst cell
height was 1:0 � 106 m �xed at both ends of the plate
and exponentially stretched from the surface to the outer
boundary at a rate of 11% with a total of 121 grid points.
The upper boundary was 2 m away and the lateral width
of the grid of 0.01 m. All three blocks had dimensions
of 81 � 121. Tripping to turbulent 
ow simulation occurred
around Rx = :3 million or R�1 = 900, corresponding to a
physical distance of approximately 9 mm downstream of
the plate leading edge. This allowed for laminar 
ow to
occur over roughly 32 computational cells before tripping to
turbulent 
ow. Grid cell counts were divisible by four to
allow a minimum of 2 levels of grid sequencing.

Boundary Layer Characteristics|Figure 2 shows the
Reynolds number based on length variation with distance
from the leading edge. The Reynolds number at the plate
trailing edge was approximately 180 million. Note that the
plot is a log-log type with the symbols indicating the stream-
wise distribution of the grid points. The high Reynolds
number was obtained through increasing the free-stream
total pressure, rather than physically lengthening the 
at
plate geometry. The normalized velocity and shear stress
distributions at R� = 1420 and 100,000 are shown in �g-
ures 3 and 4. The comparisons at R� = 1420 are com-
pared with the DNS calculations of Spalart, ref. 15, and
at R� = 100; 000 are compared with the classical 
at plate
equations. All three ASM match fairly closely the DNS
calculation shown in �gure 3, with the Girimaji model fol-
lowing the closest in the bu�er region. All three models
were slightly above the DNS at the edge of the bound-
ary layer. Similarly, Girimaji best �t the DNS stress pro-

�le, u0v0+ = (@u=@z)C�f�K
2="=u� , though all three ASM

were generally a good match. The high Reynolds num-
ber comparisons, �gure 4, at R� = 100; 000, approximately
NRe = 90 million, have trends fairly consistent with the clas-
sical 
at plate boundary layer 
ow equations. The stress
pro�les, �gure 4(b), have similar lower level behavior (be-
low y+ = 50) as the lower Reynolds number pro�les and a
greatly 
attened region of constant stress below the bound-
ary layer edge around y+ = 30; 000. The grid had typically 2
cells less than y+ = 2:5 and about 36 cells in the boundary
layer at R� = 1420.

Flat Plate Skin Friction|Figures 5 and 6 are a compari-
son of classical 
at plate theories for local and average skin

friction with the three ASM solutions. The equations for the
local skin friction comparisons were:

cf =

8>><
>>:

0:664=
p
Rx; Blasius ;

0:0590Rx
�1
5 ; 1

5th power law;

0:455=ln2(0:06Rx); White-\Exact" theory.

(12)

The equations for the average skin friction were:

CF =

8>>>>><
>>>>>:

1:328=
p
RL; Blasius;

0:455=(log2:5810 (RL)�A=RL); Transition;

0:074RL
� 1
5 �A=RL;

1
5th power law;

0:523=ln2(0:06RL); White-\Exact" theory.
(13)

where A = Rcrit(CFt
�CFl

), CFl
= 1:328=

p
Rcrit, CFt

=

0:074(Rcrit)
�1
5 .

Rcrit is the local Reynolds number at the point of transi-
tion from laminar to turbulent 
ow. Transition was de�ned
as the point at which the shape factor H12 �rst fell below
2.3. Local skin friction and average skin friction coe�cients
and normalized turbulent viscosity are plotted in �gures 7, 8
and 9, respectively for all three of the algebraic Reynolds
stress models. Girimaji, SZL and GS ASMs predict sim-
ilar and consistent skin friction characteristics throughout
the Reynolds number range. All three models were virtually
identical in local and average skin friction for the laminar

ow that developed upstream of the transition trip point at
Rx = 300; 000. Downstream of the trip, the Girimaji model
developed slight higher local skin friction that the other two
ASM, with subsequently higher average skin friction. All
three models departed from the 1/5th power theory for local
skin friction at Reynolds numbers above 20 million. The skin
friction predicted by Girimaji's model was slightly above the
higher Reynolds number theory of White, while the other
two tracked slightly low.

The trend of average skin friction through transition
to turbulent 
ow was similar between the three models
and followed the 1/5th power theory very closely until,
again departing around 20 to 30 million Reynolds number,
�gure 6. Figure 7 is a plot of the growth of turbulent
viscosity normalized by the local laminar viscosity with R�1 .
Girimaji's model predicts the highest level of normalized
turbulent viscosity, though all three models are very similar
in level and rate of growth.

Boundary Layer Shape Factors|All three ASM have very
similar shape factor H12 trends as shown in �gure 8. The
�rst 8 or so computational cells were neither laminar nor
turbulent as the solution developed. The subsequent 28
cells matched the theoretical laminar characteristics very
closely. The theoretical turbulent shape factor was not
closely achieved until around Rx = 20 million. Even though
transition from laminar 
ow occured relatively quickly, for-
mation of a turbulent shape factor close to the theoretical
shape required some distance to achieve. All three models
very closely match the turbulent shape factor of H12 = 1:27
at very high Reynolds numbers.

Overall, all three non-linear turbulence models appear to
be consistent and well behaved turbulent 
at plate proper-
ties up to Reynolds numbers of 180 million.
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Axisymmetric Afterbody

Test Facility|The second test case was an axisymmet-
ric geometry that was part of a series of models tested
in both the Langley 1/3m Pilot Transonic Cryogenic Tun-
nel and the 16-Foot Transonic Tunnel. The Pilot Tunnel
had an octagonal test section with slots at the corners of
the octagon and is essentially a scale model of the Lang-
ley 16-Foot Transonic Tunnel test section, ref. 16. The test
medium for the cryogenic tunnel was nitrogen cooled by liq-
uid nitrogen. High Reynolds number data were obtained in
the 0.3m tunnel through a combination of cryogenic free-
stream temperatures and free-stream total pressure that are
independently controllable. Approximately 5 atm. of pres-
sure and 100K total temperature produced a unit Reynolds
number of 260 million/meter.

The experiment was conducted over a range of tempera-
tures from approximately 100K to 300K and pressures from 1
to 5 times the standard atmospheric level. Several settings
of free-stream total temperatures or pressures can result in
identical settings of Reynolds number. Surface pressure co-
e�cients and nozzle boattail drag were shown to be simi-
lar regardless of the temperature/pressure combinations that
created equivalent Reynolds numbers, ref. 2. High Reynolds
number simulations with the CFD method were obtained
through increased total pressure rather than through a com-
bination of free-stream total pressure and cryogenic tem-
peratures. Though data were obtained over range of Mach
number from 0.6 to 0.9, only the M = 0:9 data is compared
with the CFD in this paper. The following is a table of
conditions for experimental data obtained at M = 0:9 for
the L=dm = 16:0 model. One atmosphere is de�ned at
0.101325 MPa (14.703 psi).

M
1

Tt0 ,K(R) pt0 ,atm NRe � 10
6

.903 106 (191) 4.98 128

.908 118 (212) 3.98 87

.901 119 (214) 2.98 64

.911 118 (212) 2.47 55

.910 118 (212) 1.97 43

.904 119 (214) 1.49 32

.903 118 (212) 1.24 27

.899 312 (562) 4.97 28

.899 308 (554) 3.79 22

.902 308 (554) 2.48 14

.901 307 (553) 1.23 7

Geometry|The con�guration used for this study was
one of six models that were built for the original Reynolds
number study, ref. 1. Four models with di�ering boattail
geometry were associated with a body length of 8 inches
from the nose to the start of the boattail (characteristic
length) and two models with a characteristic length of 16
inches. The boattail geometries had circular arc, circular
arc-conic, or contoured pro�les. This investigation utilized
the circular arc with a length-to-maximum-diameter ratio
(�neness ratio) of 0.8 boattail. Figure 9 is a photograph
of the model mounted in the pilot tunnel. The nose of
the model was a 28� cone 1.7956 inches long fairing to the
cylindrical body via a 1.3615 inch radius circular arc whose
center is 2.125 downstream of the model nose and 0.8615
inches below the model centerline. The circular arc fairing
is tangent at its endpoints to the conical nose (1.7956 inches
from the nose) and cylindrical body (2.125 inches from the

nose). The model was sting mounted with the diameter
of the sting being equal to the model base diameter. The
length of the constant diameter portion of the sting (6.70
inches measured from the nozzle connect station) was such
that, based on the work of Cahn, ref. 17, there should be
no e�ect of the sting 
are downstream of the nozzle trailing
edge on the boattail pressure distributions.

The axisymmetric afterbody grid utilized H-O type mesh
topology with all block dimensions that were divisible by 4.
The mesh was gridded with a single cell 5 degree wide wedge
grid with the stream-wise 
ow direction oriented along the j
index to utilize the implicit 
ow solver in the code for faster
solution convergence. The body was described using 100
cells extending from the leading edge of the nose to the nozzle
connect station. There were 80 cells extending from the
nozzle connect station to the nozzle boattail trailing edge.

The free-stream conditions for axisymmetric CFD cases
were M = 0:9, Tt0 = 540R using air at 
 = 1:4: The �rst
cell height of each con�guration's grid was di�erent for
each free-stream Reynolds number according to the following
schedule.

Reynolds number pt0,atm. (psi.) h1 (inches)

7 . . . . . . 1.2 (17.8) 6�10
�5

55.2 . . . . 9.52 (140.) 8�10
�6

128.3 . . . . 22.1 (325.) 2�10
�6

The wind tunnel models were constructed of cast alu-
minum with stainless-steel pressure tubes cast as an integral
part of the model. The model was instrumented with 30
pressure ori�ces in three rows of 10 ori�ces each. The 1 inch
diameter of the model physically precluded the placement
of all 30 ori�ces along the same row. The following is a
tabulation of the non-dimensional ori�ce locations.

x/dm for L/dm = 16 at

� = 0
� � = 120

� � = 240
�

-0.4491 -0.4660 -0.4561

-.1637 -.2201 -.1552

-.0600 -.1281 -.0590

.0337 -.0260 .0390

.1268 .0744 .1342

.2279 .1729 .2713

.3210 .2696 .3718

.4199 .3679 .4680

.5231 .4640 .5749

.6279 .6758 .7304

Grid convergence|Figures 10 and 11 show grid sensitiv-
ity of the Girimaji ASM at M = 0:9 at the lowest and highest
Reynolds number for this test case, NRe = 7 and 128 million,
respectively. These sensitivities were relatively consistent for
the other turbulence models and other viscous models inves-
tigated. A few exceptions occurred where the coarse grid
solution did not converge, but the following medium and
�ne grid solutions converged and the results were similar in
nature as those shown in �gures 10 and 11. All solutions
were fairly well grid converged and solution converged. Ini-
tial inspection of �gure 11, the coarse grid solution has the
closest match with the data. Further re�nement of the grid
revealed this solution to not be grid converged. Converged
solutions for this geometry appear to require between 40
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to 80 cells along the nozzle boattail to adequately predict
the shock-separated 
ow reasonably accurately.

Low Reynolds number Computations - Figures 12 through
16 are low Reynolds number calculations showing the ef-
fect of turbulence model, turbulent trip location and viscous
model on pressure coe�cient and turbulent kinetic energy
distributions.

In �gure 12 all the calculations were performed with us-
ing a single thin-layer viscous model, i.e., k-thin layer for
this mesh, the min-mod solution limiter, and a turbulent
trip point, trip 1, approximately 0.031 inches (0.08 cm)
downstream of the nose. The three ASM predicted a shock
strength slightly weaker than the data and a pressure re-
covery slightly lower than the data. The Standard K � "
model, in this instance, appears to have better agreement
with the data closely matching peak negative pressure and
recovered to a static pressure only slightly above that of the
data at the boattail trailing edge. Figure 13 is a plot of
the peak turbulent kinetic energy for each turbulence model
using the same parameters as the calculations in �gure 12.
For clarity, two areas of the axisymmetric body are de-
tailed, the region downstream of the nose where the tur-
bulent trip occurs and the region around nozzle boattail.
The large spike in K=a2 just downstream of x=dm = �16:
is the turbulent trip impulse in k. None of the four tur-
bulent models tested developed turbulent 
ow immediately
downstream of the trip. The Standard K � " linear model
developed turbulence �rst as seen by the rise inK=a2 around
x=dm = �15:7. The Girimaji and SZL ASM became turbu-
lent around x=dm = �15:3, and GS became turbulent the
furthest downstream at x=dm = �14:4.

Early studies simulating the incompressible 
at plate

ow displayed similar characteristics. If the turbulent
trip was placed upstream of the critical 
ow point, tur-
bulence would not develop immediately downstream of the
trip. Conversely, turbulence would develop immediately
when the turbulent trip was placed downstream of the
critical 
ow point. Considering this, a di�erent turbu-
lent trip point was chosen roughly between the furthest
upstream and downstream turbulent development points
noted previously and solutions re-developed for the three
ASM. Figures 14(a) through (c) show that downstream
of the cone-cylinder transition of body shape, approx.
x=dm = �13, despite the di�erent initial development of
turbulence, (trip 1|upstream trip@ x=dm = �15:969 ver-
sus trip 2|downstream trip@ x=dm = �15:000) no signif-
icant changes occur in the peak turbulent kinetic energy.
Figure 15 is representative of the lack of in
uence on
static pressure coe�cient distribution on the nozzle boat-
tail between the two turbulent trip points using the min-
mod solution limiter. Further parametric studies are needed
to determine the boundary layer behavior using other solu-
tion limiters with changes in the laminar-to-turbulent 
ow
regions.

Figure 16 is a study of the e�ect of di�erent viscous
models on the 
ow on the afterbody. Three calculations
were performed using k-thin layer (321); j-k viscosity coupled
(322); and j-k viscosity uncoupled (323) viscosity models
with Girimaji ASM at 7 million Reynolds number. The
use of j-k viscosity appears to improve the comparison with
experimental data by creating a shock slightly stronger and
further downstream than the k-thin layer calculation, in

addition to slightly raising the pressure recovery in the
region of separated 
ow. As will be shown subsequently,
the observations of best comparison with data will change
with Reynolds number.

High Reynolds number Computations|Figures 17 through
21 are high Reynolds number calculations showing the e�ect
of turbulence model and viscous model on pressure coe�-
cient and turbulent kinetic energy distributions on the body.
Figure 17 is a comparison of the four turbulence models at
NRe = 128 million using k-thin layer viscosity, min-mod lim-
iter and trip1 for turbulent tripping. The three ASM cluster
around the experimental data matching the pressure recov-
ery in the separated 
ow region considerably better than at
low Reynolds numbers. The Standard K � " model predicts
the strongest shock and highest pressure recovery.

Figure 18 is the plot of peak turbulent kinetic energy
similar to �gure 13 for the four turbulence models. Signif-
icantly, all four models developed turbulent 
ow immedi-
ately downstream of the turbulent trip as seen by the four
curves departing from the trip spike inK=a2 at levels around
0.004. Each turbulence model remained at slightly di�erent
levels, but had similar trends until the region of 
ow involv-
ing the shock-separation downstream of x=dm = 0:25: The
trend of the peak turbulent kinetic energy was similar to the
7 million Reynolds number trend in �gure 13. Though the
three ASM have very similar static pressure coe�cient dis-
tributions, �gure 17, the peak K=a2 trends are completely
di�erent. Also, the Cp distributions between SZL and the

Standard K � "model are very di�erent, but the peak K=a2

have similar trends and levels. Therefore at this point, a cor-
relation between the trend of K=a2 and Cp can not be made.

Figure 19 is the e�ect of viscous model using the Girimaji
ASM at 128 million Reynolds number. In this instance,
the k-thin layer calculation (321) provides the best compar-
ison with the experimental pressure coe�cient distribution.
The j-k viscous models behaved similarly in that the shock
strength increased and the recovery pressure was higher than
the k-thin layer calculation. Figure 20 is the peak K=a2 for
the three viscous models shown in �gure 19. The three vis-
cous models have similar trends in peak turbulent kinetic
energy until the region of shock-separated 
ow downstream
of x=dm = 0:25: Both j-k viscous models generate higher
peak turbulence than the k-thin layer model. The plots in
�gures 21(a) to (c) are contours of turbulent kinetic energy
predicted by the three viscous models previously discussed.
The k-thin layer viscous model, �gure 21(a), has an abrupt
discontinuity in the 
ow-�eld around the boattail trailing
edge, x=dm = :8, while the both j-k viscous models predict
very smooth and continuous contours from the region of the
shock, x=dm = :25, to downstream.

Reynolds number Trends|Figures 22 through 27 are
trends of integrated boattail pressure drag, skin friction, and
predicted point of 
ow separation with Reynolds number.
The integrated pressure drag variation with Reynolds num-
ber comparing CFD with experiment is shown in �gure 22.
Despite the changes in the shock strength and pressures on
the nozzle boattail with Reynolds number; the variation in
pressure drag was small. Overall, the predicted level of pres-
sure drag was slightly below that of the experimental data,
though at the low and high Reynolds numbers the CFD was
almost within the scatter of the experimental data. As a
point of reference, 3 additional data points are plotted to

7

Americal Institute of Aeronautics and Astronautics



include data obtained for the short cryogenic models tested
in the 16 Foot Transonic Tunnel at Langley, and the origi-
nal 48 inch model also test in the 16 Foot Tunnel.

Figure 23 shows the predicted change in static pressure
coe�cient distribution with Reynolds number. The largest
change seems to occur from the very low Reynolds number
to the mid-range, with the code predicting a large increase
in the peak velocity, a downstream shift of the peak and a
slight elevation of the static pressure of the 
ow in the region
of separation. Considerably less change was predicted be-
tween the mid-range Reynolds number to the high Reynolds
number of 128 million.

Figure 24 is a bar chart of the integrated pressure drag
on the boattail at 7 million Reynolds number comparing
the di�erent viscous models and trip location predicted drag
with the Girimaji ASM with experimental data. The higher
recovery pressure that occurred through the j-k viscosity
calculations reduced the integrated pressure drag from 37
to roughly 28 nozzle drag counts. The scatter in the CFD
results is about the same as the experimental results with
the exception of the 48 inch model data tested in 16-Foot.

High Reynolds number comparisons are shown in
Figure 25 with the addition of GS, SZL and Standard K � ".
The scatter in the CFD is similar to the low Reynolds num-
ber comparison with the Standard K � " predicting the low-
est drag due to the considerably higher pressure recovery at
the boattail. Girimaji and SZL, k-thin layer, are the closest
to the experimental data, though on the average are low.

Variation of predicted skin friction coe�cients for Girimaji
ASM with Reynolds number is plotted against 
at plate
wetted area estimations in �gure 26. In general, the CFD
predicts skin friction coe�cients are 3.5 nozzle drag counts
low at 7 million Reynolds number and about 1.5 nozzle drag
counts low at 128 million Reynolds number. Considering
the 
ow e�ects not accounted for by the 
at plate wet-
ted area calculations, (e.g., non-constant Mach number, ad-
verse/favorable pressure gradients, aft-projected areas and
separated 
ow) this comparison is fairly good.

Lastly, �gure 27 is an analysis of the predicted point of

ow separation with Reynolds number comparing with some

ow visualization data obtained in the 16 Foot Transonic
Tunnel on the 48 inch model in 1974 and the parametric
theory of Reshotko-Tucker, ref. 18. The separation observed
in ref. 18 was somewhat three dimensional with the esti-
mated extent thereof shown by the spread in open triangles
in the �gure. No separation data are available for this model
at any of the other Reynolds numbers. The SZL ASM pre-
dicted a 
ow separation point that more closely matched the
wind tunnel measurement and Reshotko-Tucker predictions
with increasing Reynolds number. Both Girimaji and GS
predicted 
ow separation points further downstream. The
j-k viscosity predictions of Girimaji predicted the least sep-
arated 
ows, with the j-k coupled viscosity calculation pre-
dicting practically no separated 
ow at 7 million Reynolds
number.

Remarks

1. The high Reynolds number boundary layer calculation of
skin friction and shape factor for the subsonic 
at plate
was consistent with theoretically predicted behavior.

2. The linear turbulence simulation predicted a shock fur-
ther downstream and a recovery pressure higher than the
non-linear turbulence simulations at the low and high
Reynolds numbers.

3. The best performance combination of turbulence mod-
els and viscous models appears to change from low
Reynolds number to very high Reynolds number. The
ASM with j-k viscous modeling appeared to provide the
best low Reynolds number comparison, while ASM with
only k-thin layer viscosity most closely matched the high
Reynolds number static pressure coe�cient distribution.
Further investigation is required to resolve this issue.

4. The afterbody pressure drag variation observed in the
experimental data and the computations with Reynolds
number was small. The change with Reynolds number
of the pressure coe�cient distribution observed in the
experimental data is qualitatively predicted by the CFD.
This \no-e�ect e�ect" had been discussed in the previous
high Reynolds numbers investigations.

5. Most of the solutions using the non-linear models pre-
dicted a separation point downstream of experimental

ow visualization and parametric theory except the model
by Shih, Zhu and Lumley.
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Appendix

The functions and variables used in the Girimaji algebraic
Reynolds stress model are listed:

L0
1
=

C0
1

2
� 1;L1

1
= C1

1
+ 2

L2 =
C2

2
�

2

3
; L3 =

C2

2
� 1; L4 =

C4

2
� 1:

�1 =

�
K

�

�2

SmnSmn; �2 =

�
K

�

�2

WmnWmn

p = �
2L0

1

�1L
1
1

; r = �
L0
1
L2�

�1L
1
1

�2

q =
1

(�1L
1
1
)2

��
L0
1

�2
+ �1L

1
1
L2 �

2

3
�1 (L3)

2 + 2�2 (L4)
2

�

a =

�
q �

p2

3

�
; b =

1

27

�
2p3 � 9pq + 27r

�

D =
b2

4
+
a3

27
; cos(�) =

�b=2p
�a3=27

The coe�cients G2 and G3 are:

G2 =
�L4G1

L1
0
� �1L

1
1
G1

; G3 =
2L3G1

L1
0
� �1L

1
1
G1

additionally

C0
1
= 3:4; C1

1
= 1:8; C2 = 0:36; C3 = 1:25; C4 = 0:4:
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(b) Turbulent shear stress at Rθ=1420.
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Figure 1.-Block and grid arrangement for subsonic flat plate.
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Figure 2.-Reynolds number with distance along flat plate.
x(m)

Rx

10-1 100 101 102 1030

5

10

15

20

25

u+

y+

Figure 3.- Comparison of boundary layer characteristics for different turbulence models.

(a) Law-of-the-wall profile at Rθ=1420.
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(b) Turbulent shear stress at Rθ=100,000.
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Figure 5.-Local skin friction for subsonic flat plate.
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Figure 6.-Average skin friction for subsonic flat plate, (same symbol table as figure 5).
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Figure 4.- Comparison of boundary layer characteristics for different turbulence models.
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Figure 7.- Turbulent viscosity development
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Figure 9.- Photograph of 8 inch model in 0.3m Transonic Cryogenic Tunnel.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

American Institute of Aeronautics and Astronautics
12

Cp

x/dm

Figure 10.- Representative grid sensitivity at
7 million Reynolds number.
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Figure 13.- Peak turbulent kinetic energy in boundary layer, NRe=7million.
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Figure 12.- Comparison of turbulence models with experimental data, M=0.9,NRe=7million.
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Figure 14(a).-Effect of trip location on turbulent kinetic energy, NRe=7 million.
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Figure 14(b).- Effect of trip location on turbulent kinetic energy, Gatski-Speziale, NRe=7 million.

-17.0 -16.0 -15.0 -14.0 -13.0 -12.0 -11.0
10-3

10-2

10-1

k/a2

x/dm

|
Nose

|
Cylinder

Figure 14(c).- Effect of trip location on turbulent kinetic energy, SZL, NRe=7million.
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Figure 15.- Effect of trip location on nozzle pressure coefficients, M=0.9,NRe=7million.
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Figure 17.- Comparison of turbulence models
with data, NRe=128 million.
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Figure 18.- Peak turbulent kinetic energy in boundary layer, M=0.9, NRe=128 million.
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Figure 16.- Effect of viscous model on nozzle
Cp distribution, NRe = 7 million.
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Figure 19.- Effect of viscous model on nozzle Cp distribution, NRe=128 million.

NRe=128mil.,Girimaji,321,trip1

NRe=128mil.,Girimaji,322,trip1

NRe=128mil.,Girimaji,323,trip1

L=16,M=0.90,128.5M,φ=0.

L=16,M=0.90,128.5M,φ=120.

L=16,M=0.90,128.5M,φ=240.

L=16,M=0.89,127.4M,φ=0.

L=16,M=0.89,127.4M,φ=120.

L=16,M=0.89,127.4M,φ=240.



-17.0 -16.0 -15.0 -14.0 -13.0 -12.0 -11.0
10-3

10-2

10-1

Cylinder
|

|
Nose

k/a2

Figure 20.- Effect of viscous model on peak turbulent kinetic engery, M=0.9, NRe=128 million.

x/dm

NRe=128mil.,Girimaji,321,trip1

NRe=128mil.,Girimaji,322,trip1

NRe=128mil.,Girimaji,323,trip1

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8
10-3

10-2

10-1

Cylinder
|

|
Nose

k/a2

x/dm

|

Boattail
k-thin layer

jk-coupled

jk-uncoupled

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0

0.2

0.4

0.6

American Institute of Aeronautics and Astronautics
16

x/dm

z/dm

(c) j-k uncoupled viscous model.
Figure 21.- Effect of viscous model on turbulent kinetic energy contours.
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Figure 23.- Predicted variation of afterbody Cp distribution with Reynolds number, M = 0.9.
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Figure 24.- Comparison of integrated boattail pressure drag at around 7 million Reynolds number,
(PAB3D results using Girimaji ASM), M =0.9.
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Figure 22.- Comparison of predicted integrated pressure boattail drag with experiment, M=0.9.
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Figure 25.- Comparison of integrated boattail pressure drag near 128 million Reynolds number,
M =0.9.
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Figure 26.- Comparison of predicted skin friction coefficient with wetted-area, flat-plate estimation, M = 0.9.

CD,βsf,CFD L=16,Girimaji,321,trip1

CD,βsf,CFD L=16,Girimaji,322,trip1

CD,βsf,CFD L=16,Girimaji,323,trip1

CD,βsf,fp Flat Plate Estimation

106 107 108 1090.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

x/dm

NRe

American Institute of Aeronautics and Astronautics
18

Figure 27.- Variation of predicted point of flow separation compared with flow visualized data and 
parametric theory.
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